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J.  Phys. A: Math. Gen. 20 (1987) 2389-2403. Printed in the U K  

Improved eigenvalue sums for inferring quantum billiard 
geometry 

M V Berry 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK 

Received 28 October 1986 

Abstract. An algorithm is described for obtaining successive approximations to geometric 
properties K ,  of a closed boundary B (such as its length L or the area A within it), given 
the lowest N eigenvalues { E n )  of some wave operator defined on the domain bounded by 
B. The technique is based on the asymptotic expansion of the partition function for small 
I :  @ ( I )  = Z:=, exp{-E,t}- I-' Z:,, K,t''*. Four different billiards are employed to illus- 
trate the method. The first is the rectangular membrane, which is classically integrable; 
for the other three, B is an Africa shape, which is classically chaotic: the Africa membrane, 
Africa Aharonov-Bohm billiard and Africa neutrino (massless Dirac) billiard. A typical 
result is that A and L can be reconstructed from 125 eigenvalues to a few parts in lo4 (for 
the rectangle the accuracy is even higher). The efficiency of the reconstruction algorithm 
appears to be independent of the classical chaology of E .  

1. Introduction 

In quantum billiards, particles satisfying some wave equation move freely inside a 
finite planar domain whose boundary B has hard walls. Eigenvalues {E,}  = E , ,  E*,  . . . , 
are determined by the wave equation together with its boundary conditions (in the 
simplest case, where the operator -Vz acts on scalar wavefunctions vanishing on B, 
the {E,}  are proportional to the squares of resonant frequencies of elastic membranes 
clamped round B). Here I explore one aspect of the natural question: can the geometry 
of B be inferred from knowledge of all or some of the {E,,}? Or, as Kac (1966) put 
it, can one hear the shape of a drum? 

From {E,,} can be constructed the spectral staircase (eigenvalue counting function) 
X 

N ( E ) =  C B(E -E,,) 
, , = I  

where B denotes the unit step. Because of the steps, N (  E )  cannot have a convergent 
power series expansion in E. But the smoothed staircase ( N ( E ) )  does possess an 
asymptotic expansion for large E :  

( N ( E ) ) = A E / ~ T - ~ L E " * / ~ T + C + .  . . . (2) 
In this equation, A is the area enclosed by B, L is the length of B, and y and C are 
constants whose values for three different types of billiard will now be given. 

First are the familiar scalar membrane billiards with operator -V2 and Dirichlet 
boundary conditions, for which (Baltes and Hilf 1976) 

y = l  K ( S )  d s / l 2 + C  ( ~ / p , - p J r ) / 2 4  ( 3 )  
J I 
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2390 M V Berry 

where the first summation is over smooth arcs B, with K ( S )  being the curvature as 
function of arc length, and the second summation is over corners with angles P I .  (The 
assumption here is that B is simply connected and without cusps.) If B is smooth, 
(3) gives C " ' = i .  

Second are the Aharonov-Bohm billiards (Berry and Robnik 1986) in which 
quantum time-reversal symmetry is broken by a single line of magnetic flux piercing 
the domain. If the (dimensionless) flux is a, the operator is - ( V  -iaA(r)) '  where A(r)  
is any vector potential whose curl is 2 d ( r )  (directed perpendicular to the domain). 
This operator acts on scalar wavefunctions vanishing on B. Berry (1986) showed that 

y = l  C = C'"= C"'-a(mod l ) [ l - a ( m o d  1)]/2. (4) 

Third are the neutrino billiards, where the free massless Dirac operator acts on 
two-component spinors within B and where the hard wall corresponds to an infinitely 
high 4-scalar potential. Full details will be given by Berry and Mondragon (1987). 
For the coefficients in ( 2 )  we so far have 

y = o  C = C'3' unknown. ( 5 )  

We will be interested in inferring the values of A, L and C (and so distinguishing 
the three types of billiard) given a sequence of the first N eigenvalues. For this purpose 
the spectral staircase N ( E ) ,  employed in conjunction with (2), is not a promising 
candidate. It is true that, as figure 1 shows, the asymptotic formula is a very accurate 
description of the smoothed staircase even for small N (and following Berry (1981) 
is now used routinely to check computations of {E,} for missing eigenvalues). But 
the fluctuations of the true N( E )  about the smoothed ( N (  E )) are large and this makes 
accurate reconstruction difficult. This is illustrated in figure 2 ,  which shows the 
deviation of N ( E )  (taken as n -$) from equation (2) with C ignored, i.e. 

A, = n -f-AEn/4.rr- LE:/2/4.rr. ( 6 )  

Figure 1. Spectral staircase ( 1 )  for first 50 levels of the Africa membrane billiard shown 
in figure 8; the smooth curve is the asymptotic approximation (2) .  
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1 - n -' 

- 2  i 
Figure 2. Spectral fluctuations A ' ( € ) - ( A ' ( € ) )  of the first 125 levels of the staircase of 
figure 1 ,  calculated using equation (6); the broken line is C = f .  

If A and L are known, the average of An should give C, in this case b .  However, the 
fluctuations are several times larger than C so the average gives an inaccurate value: 
for the data of figure 2, the average is 0.156 and the cumulative averages of the 
fluctuations, namely Zk=, A,/n, themselves fluctuate about C = b with an amplitude 
of about C / 5 .  

The fluctuations arise from closed orbits (bouncing-ball geodesics) in the billiard 
domain (Balian and Bloch 1972), which give non-analytic corrections connecting N (  E )  
with ( N ( E ) ) ;  these are not included in the power series (2).  An isolated closed orbit 
(such as occurs amongst chaotic geodesics), with length 1, contributes to N ( E )  a term 
of order cos( E l i 2 ) ;  a non-isolated orbit (such as occurs amongst integrable geodesics) 
contributes a term greater by a factor This raises the possibility (Chazarain 1974) 
of using the fluctuations to infer the length spectrum of the closed geodesics of B. The 
distribution of closed orbits can also give information about the statistics of the spectral 
fluctuations (Berry 1985). But when seeking to inder A, L and C from {E,,} the 
fluctuations are a nuisance, and it is best to employ a formalism that avoids them. 

One such formalism, to be employed throughout the rest of this paper, is based 
on the partition function 

cc 

@ ( t ) =  C exp{-E,t}. 
n = l  

This is t - '  times the Laplace transform of the staircase N ( E ) .  Corresponding to (2)  
is an asymptotic expansion for small t which we write formally as 

The coefficients K j  are related to those in (3): 

KO = A / 4 r  KI = - y L / 8 r ' / 2  Kz = C. (9) 

Beyond the term K z  = C (which is 'constant' both for @ ( t )  and N ( E ) )  we have in 
general only the results of Stewartson and Waechter (1971) for smooth scalar flux-free 
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B, which give, for the first such term 

K ,  = loL dx ~ ' ( s ) /256n ' / '  

What makes @( t )  superior to N (  E )  as a means of reconstructing billiard geometry 
is that the fluctuations are exponentially small in I, rather than oscillatory in E :  an 
isolated closed orbit of length I contributes to @( t )  a term of order t-''2 exp{-12/4t}; 
a non-isolated orbit contributes a similar exponential with t- '  replacing t - ' l 2 .  Figure 
3 illustrates how smoothly @ ( t )  is approximated for small t by the first three terms of 
the asymptotic series (8). Just how good the approximations are in absolute terms is 
illustrated in figure 4: as they should, the full and broken curves appear to approach 
t = 0 as and t ,  respectively. Of course, the approximations fail very close to t = 0 
(in fact when td ET;5) but this is because only 125 eigenvalues (rather than infinitely 
many) are included in the summation (6), so that @(O) = 125 (rather than infinity). 

Figure 3. Partition function (7) for the first 125 levels of the Africa membrane billiard 
shown in figure 8; the broken curve shows the first three terms of the asymptotic approxima- 
tion (8). 
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Figure 4. Deviation from @ ( t )  in figure 3 of the first three terms (full curve) and four 
terms (broken curve) of the approximation (8). 
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The central idea of this paper (§ 2 )  is a simple technique for obtaining from the 
eigenvalues a sequence of improving approximations to each of the constants Kj  in 
( 7 ) .  The technique is illustrated in 0 3 by applying it to reconstructions of A, L and 
C for four billiards. The first of these is the rectangular membrane. The other three 
all have B in the Africa shape illustrated in figure 8; for this B we shall study the 
membrane, Aharonov-Bohm and neutrino billiards. 

2. Sums based on the partition function 

The obvious way of reconstructing the billiard area from ( 7 ) - ( 9 )  is through the identity 
cc 

A=47r l imt  1 exp{-E,t}. ( 1 1 )  
1-0 n - 1  

But with the finite number of levels available in practice the limit will be zero rather 
than A (cf corresponding behaviour of O ( t )  in figure 4), so that the best hope is to 
approximate A as some kind of plateau in ( 1  1 )  when t is small but not zero. In these 
circumstances it is important to know how the limit in ( 1 1 )  is approached. From (8) 
there follows 

13 

A-4.rrt exp{-E,t}- tilz as t+0.  
n = l  

This represents slow convergence to the limit and so we expect (and will later find) 
bad approximations to A with finitely many levels. 

However, convergence to the limit can be systematically improved by defining t = x2 
and writing (8) as 

X X 

x@(x2) = x 1 exp(-E,x'} = G ( x )  = x - '  K,x' 
f l = l  J = o  

and differentiating m times. This eliminates the terms with coefficients K , ,  . . . , K, ,  
so that (denoting derivatives by superscripts in brackets) 

[ G(x)]'" = ( - l ) " m ! K o / x m * ' +  m ! K , + ,  +. . . . 
Thus the limit 

X 

A = [ 4 . r r ( - l ) " / m ! ]  lim xm+l 1 [x exp{-EnxZ}1'" ( 1 5 )  

is approached with error of order xm+I = t ' m + l ) / z ,  and depends on the coefficient K, , ,  . 
This procedure is easily generalised to a means for systematically reconstructing 

all the coefficients K,. From ( 1 3 )  we obtain 

x-0 n = 1  

~ - ~ [ x G ( x ) ] ' ~ ) / k ! = x - '  K k + , [ ( k + j ) ! / j !  k ! ] x ' .  
J = o  

This has the same form as ( 1 3 )  but with the leading coefficient Kk rather than K O .  
Differentiating m times therefore gives the generalisation of ( 1 5 )  as 

Kk = [ ( - l ) " / k ! m ! ]  lim r - 0  x""'[x-'[xG(x)]'k']'"'~ (17 )  

where the limit is approached with error xm+'  and depends on the coefficient Kk+, , ,+ ,  . 
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For practical calculation, a convenient way to write these formulae is 

Kk = lim Kk,,,( f )  (18) 
1-0 

where Kk,,,( t) ,  the mth approximanf function for the kth coeficient, is 

tn = ( tEn)1 /2 .  K k , , , ( t )  =[(-l)”/m!k!] E!,k’2-1)ty”[t;1[t’n exp{-t,}] 2 ( k )  3 l m )  

n = l  

(19) 
Equations (18) and (19) are the main results of this paper. Before discussing them, 
explicit formulae will be given for few K k . , , ( f ) .  

For the area, (19) gives 
T 

A m ( t )  ~47rKo,m(t)=(27r/m!)t  1 [ex~{-t’n}ty-’Hm+,(tn)I tn = (fEn)1’2 (20) 
n = l  

when H,+, denotes the Hermite polynomials (Gradshteyn and Ryzhik 1965). The first 
few approximants are 

A,( t )  = 47rt 

A , ( t )  =47rt 1 exp{-Ent}(2Ent - 1) 

A2( t )  =47rt 1 exp{-Ent}Ent(2Ent -3) 

exp{ - Ent}  
n = 1  

X 

n = 1  

ip 

n = 1  

33 

A 3 ( f )  =47rt 1 exp{-Ent}Ent(4E~t2- 12Ent +3)/3 (21d) 
n = l  

For the length, (19) gives 

The first few approximants are 

L , ( t ) =  1 6 ( ~ t ) ’ / ~  f exp{-E,t)(E,t - 1) 

L , ( r ) = 3 2 ( ~ t ) ’ / ~  f exp{-E,t}E,t(E,t -2)  

n = l  

n = l  

n 

L 2 ( t )  = 1 6 ( ~ t ) ” ~  e x p { - E n t } E n t ( 2 E ~ t 2 - 7 E n t + 2 ) .  (23c) 

CO([) = C e x p ( - ~ , t } ( 2 ~ Z , t ~ - ~ ~ , t + 1 )  (240) 

Cl(t) = C e x p { - E n t } ( 4 E ~ t 3 -  16E’nr2+7Ent+ 1) (246) 

C2(r)  = e x p ( - ~ , r } ( 4 ~ 4 , r ~ - 2 4 E ~ t ~ + 2 3 ~ , t ~ + ~ ~ t +  1). (24c) 

n = 1  

For the constant term, (18) gives (with C,,,(t) = K 2 , , , ( r ) )  
P 

n = l  

00 

n = l  

X 

n=1 
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For the first post-constant term, (18) gives (with D,,,(r)=3K3,,(t)/2) 

Do(r) = - - - I / ’  2 e x p { - E n t } E n t ( 2 E ~ t 2 - 9 E n r + 6 )  
n = l  

ol(t) = -21-112 2 e x p { - ~ , t ) ~ ~ , t 2 ( 2 ~ ~ , t 2 -  1 3 ~ , t +  15). (25b) 
n = l  

Reconstructions of the coefficients K k  via (18) and (19) have errors of order t ( m + l ) / 2  

and so are expected to be more accurate for larger m ;  if the coefficient on 
which the error depends happens to vanish, the corresponding approximation can be 
expected to be especially accurate (we shall see several examples of this in the next 
sections). 

Nevertheless, it is unrealistic to expect accuracy to continue to improve indefinitely 
with m. To understood why, it will be sufficient to consider the area approximants 
A, ( t ) ,  which from (20) can be written as 

where 

gm( 7) = T(m+1) /2  exp{ - T}H,,,+ ( ~ I / ~ ) / 2 m  ! . (27) 
Note first that the functions g m ( T )  all have area unity, i.e. 

However, as illustrated in figure 5 ,  they oscillate with increasing amplitude as m 
increases: asymptotics of Hermite polynomials shows that g m ( T )  rises near 7 = m to a 
maximum of order exp{ m’/2} /m’ ’2 .  Thus computation of a high-order approximant 
function A,( t )  from the sum (26) requires the eigenvalues to be known with an error 
that decreases exponentially with m. In particular, such a computation would be ruined 
by including only a finite number N of eigenvalues in the term. To see this, note first 

Figure 5. The function g,,(s) (equation (27)) occurring in the 50th area approximant; note 
the large values near the maximum. 
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that reconstruction must employ eigenvalues t >> t , , ,  where t , , ,  = T,/ E ,  = m /  E ,  is 
the t for which the finiteness of N starts to seriously affect the value of A,(t ) .  On 
the other hand, to reach the plateau for approximant error E requires t<<  tE,m where 
tc,m - - E 2 / ( m + l )  (because the error is of order t (m+’ ) /2 ) .  Therefore the approximant 
technique works only whilst f N , m  < tE,, and so must eventually fail because t N , m  increases 
faster than 

3. Numerical illustrations 

For each of the four billiards to be described below, approximant functions K k , m ( t )  
were computed using the formulae (19)-(25) and their behaviour examined for small 
t. In almost all cases it was very easy to see how the smooth approach to the limit 
was frustrated by large and rapidly changing deviations caused by including only 
finitely many eigenvalues in the sums. The best approximation for K k  with a given 
approximant Kk,,( t )  was taken to be the extremum or inflection closest to the t value 
where the large deviations began. Table 1 summarises the results which will be discussed 
for the four billiards in turn. 

Table 1. Accuracy of reconstructions using the approximant functions K k S m ( f )  of 8 2 for 
the rectangular membrane (RM), Africa membrane (AM), Africa Aharonov-Bohm (AAB) 
and Africa neutrino (AN) billiards, computed using 125 eigenvalues for RM, AM and A A B  
and 181 eigenvalues for AN. All quantities except those marked * are given as percentage 
errors. 

Billiard 

Approximant R M  A M  A A 9  A N  

Area A,([ )  22 17 17 0.6 
Ai( t )  2 1.4 0.5 0.8 
AA1) 0.1 0.07 0.08 
A, ( ! )  0.01 0.02 0.01 

Length LLl(f) 14 10 4 0.5* 
L , ( l )  1 0.7 0.05* 
L A [ )  0.03 0.2 0.02* 

Constant CO(!) <io-’ 12 38 -0.1* 
CI(0 <io-’ 1.2 3.5 -0.08* 

- - -0.09* CAI) - 

Post-constant Do( 1 )  <lo-**  - - - 

3.1. Rectangle membrane billiard 

Let the sides of the rectangle have lengths r l / ’  and r - ’ I 2 ,  so that the ratio of side 
lengths is r and 

). (29) A = l  L = 2 (  rI l2  + r-’l2 

The first three coefficients Kj in the power series (8) for Q ( t )  are given by ( 9 )  and (3). 
In particular, because all four angles pi are 7r/2 and the curvature is zero the constant 
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term is 
c=a 

It is a remarkable feature of the rectangular membrane that all the higher coefficients 
are zero. This follows from an exact expression for @( t )  which will now be obtained. 

(31) 

The eigenvalues of -V2 for this membrane are 
Em, = r2( m2r + n2/  r) 1 < m, n <CO 

so that 
m m  

@ ( t ) =  exp[-.rr2t(m2r+n2/r)]. 
m = l  n = 1  

This is a product over Jacobi’s O3 functions (Gradshteyn and Ryzhik 1965) and his 
identity (or Poisson’s summation formuia) gives 

1 -(r/rt)’/2-2(r/.rrt)ll2 f exp(-m’r/t)) 
m = l  

When multiplied out, this gives precisely the series (8) with KjB3 = 0, plus corrections 
vanishing exponentially with t (the exponents have the form 12/4t where 1 is the length 
of the non-isolated geodesics that close after m bounces on each side of length r”’ 
and n bounces on each side of length rT1I2). 

In this billiard the geodesics are integrable: the rectangular membrane has no 
classical chaos. 

The side ratio r = 2’14 was chosen (making r2 irrational and the E,, non-degenerate), 
and the approximant functions calculated using the lowest 125 eigenvalues (it would 
have been easy to compute more, but for the Africa billiards to be discussed in the 
next two subsections only 125 were available and it was thought sensible to keep the 
different cases as similar as possible). 

Consider first the area approximants A,( t ) .  As is clear from table 1 and figure 6 ,  
the lowest such function A,( r )  gives a poor estimate of A. This is because its error is 

”* i 2 

t 0 1  

Figure 6. Area approximant functions A,(I) (equations (21)) for 125 eigenvalues of the 
rectangular membrane billiard with side ratio 2‘14, and unit area, for m = 0 , 1 , 2 , 3 .  
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dominated by the ‘length’ term and is of order t”*.  A tenfold improvement is produced 
by A , ( ? ) ;  now the error is dominated by the ‘constant’ term and is of order t .  With 
the next two approximants the improvement is dramatic, because these depend on the 
‘post-constant’ coefficients K 3  and K4 which are zero; the errors are therefore exponen- 
tially small in t rather than of order t3’2 and t’. 

Table 1 and figure 7 show that the length approximants L , ( t )  behave similarly, 
except that now the dramatic improvement occurs with L,( t )  because this depends on 
the first vanishing coefficient K 3 .  

5 

L 

L J t I  

c 0.1 t 

Figure 7. Length approximant functions L , ( i )  (equations (23)) for the billiard of figure 
6 (L=4.0150) for m = 0 ,  1.  

For the constant term C = a ,  it is the lowest approximant CO( t )  that gives exponential 
accuracy (nine digits in fact). This is far superior to the result obtained with the 
staircase fluctuations (6),  for which the data (analogous to those in figure 2) give the 
average 0.233 (the fluctuations exceed this value by about five and their cumulative 
averages Z“,=, A J n  themselves fluctuate with an amplitude of about C/5) .  

Finally, table 1 confirms that Do(t ) ,  depending as it does on K 4 = 0 ,  gives the 
expected exponential convergence onto the value (zero) of the first post-constant 
coefficient K 3 .  

3.2. Africa membrane billiard 

To explore the ‘curvature’ contribution ofthe constant term in (3 )  without the complica- 
tion of additional contributions from corners it is necessary to choose a billiard for 
which B is smooth. Such boundaries are easily generated by polynomial conformal 
maps of the unit circle (Robnik 1983, 1984). In addition, as explained by Berry and 
Robnik (1986) the simplest such map for which B has no symmetry is cubic; in the 
xy plane, with B parametrised by the angle 4 round the unit circle, 

4 4 )  + iY(4) = exp(i4) + B2 exp{2i41+ E3 exP[i(x + 3 4 ) l  Oa4s27r (34) 

where B 2 ,  B, and ,y are all real and non-zero. From the various shapes thus generated 
we choose the ‘Africa’ shown in figure 8, for which B2= B3=0.2 ,  ,y = 7r/3. In this 
billiard, geodesics are not only non-integrable but probably completely chaotic (the 
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1.5 

Figure 8. Africa billiard boundary, calculated from (34) with E ,  = E ,  = 0.2, x = ~ / 3 .  

concave section of B is a powerful source of irregularity, and numerical evidence 
indicates ergodicity). From (34) and (3 )  it follows that 

A = 3.769 91 L = 7.101 23 C = ’  6 .  ( 3 5 )  
The approximant functions Kk,m( t )  of equation (19) were computed using 125 

membrane eigenvalues obtained by the conformal diagonalisation technique of Robnik 
(1984). 

Results for the lowest four area approximants A , ( t )  are shown in table 1 and 
figure 9. None of the coefficients Kk vanish for this billiard, which therefore shows 
how the approximant technique works in a typical situation. Each successive 
approximant improves the estimate of A by about an order of magnitude. The ‘length’ 
and ‘constant’ approximants behave similarly, as figures 10 and 11 illustrate. 

As already mentioned, these striking improvements cannot continue indefinitely 
because of the finite number of eigenvalues in the sums. Figure 9 shows what happens: 
as m increases, the plateau value occurs for larger t, and will eventually be reached 

Figure 9. Area approximant functions A,(r) (equations (21)) for 125 eigenvalues of the 
Africa membrane billiard (full curves) and Africa Aharonov-Bohn billiard with golden 
flux ( a = A ( A - I ) )  (broken curves) for m = O ,  1,2,3.  
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Figure 10. As figure 9 but for ‘length’ approximant functions L,(I) for m = 0,1,2.  

Figure 11. As figure 9 but for ‘constant’ approximant functions C,(t) for m =0,1. 

before K k T m ( f )  begins to converge onto K k .  The number m of useful approximants 
decreases with k. For the constant, C,( t )  (not shown) misses C by about 5%, and for 
the first post-constant coefficient K ,  even the lowest approximant Do(t )  misses the 
target (equation (10)) by a factor of two. 

3.3. Africa Aharonov- Bohm billiard 

The boundary B is the same as in the previous subsection, but now a single line of 
magnetic flux threads the domain. We take this flux to be (in quantum units) the 
golden number a = (45 - 1)/2 = 0.618 . . . . For this billiard, 125 eigenvalues were 
computed by the method explained by Berry and Robnik (1986). 

With flux, quantal time reversibility is broken. This has a profound effect on the 
statistics of the spectral fluctuations (Berry and Robnik 1986) but leaves the area and 
length asymptotics unaltered. However, the constant term is changed: from (4) we 
predict 

C = 0.0486 (36) 
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instead of {. As we shall demonstrate now, this change has a predictable effect on the 
behaviour of the approximant functions. 

For the area approximants, figure 9 shows that the functions A,( t )  are very similar 
for Africa with and without flux, but A , (  t ) ,  A,( t )  and A3( t )  are different. The reason 
is that the convergence of A, (? )  is determined by the length term, which is the same 
with and without flux, whereas the convergence of the higher approximants depends 
on higher coefficients, which are different with and without flux. 

The same argument leads to the expectation that all the length approximants will 
differ considerably with and without flux, and figure 10 confirms that they do. 

Of course, for the constant C it is not only the convergence but the values that 
differ, and figure 11 and table 1 show that the approximant technique succeeds in 
unambiguously distinguishing the two values. 

Table 1 shows that the overall improvement of the estimates of Kk is roughly the 
same as for the Africa membrane, but the best estimates are less good (especially for 
L) .  

3.4. Africa neutrino billiard 

For this relativistic billiard, 181 eigenvalues were computed by a boundary integral 
technique explained by Berry and Mondragon (1987). Although without flux, the 
billiard does not possess quantal time-reversal symmetry and the spectral fluctuations 
behave accordingly. The reason for including neutrino billiards in the present study 
is different: the factor y in the length correction in (2) is zero (instead of unity as 
for all the other billiards) and this must affect the approximants. 

It is clear from table 1 and figure 12 that the lowest approximant gives a much 
better estimate of A for neutrino billiards than for membrane or Aharonov-Bohm 
billiards. This is because the error in A,( t )  depends on the ‘length’ term, which is zero 
in this case. For subsequent approximants this advantage disappears, and indeed their 
errors are comparable with those of the other Africa billiards. 

Because y = 0, the first few length approximants should converge on zero, and table 
1 and figure 13 show that they do. 

A 

A,( t  I 

2 5  

0 

0 0 3  t 

Figure 12. Area approximant functions A,(f)  (equations (21)) for 181 eigenvalues of the 
Africa neutrino billiard for m = 0, 1 , 2 , 3 .  
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Figure 13. As figure 12 but for the ‘length’ approximant functions L , ( t )  for m = 0, 1,2.  

Figure 14. As figure 12 but for the ‘constant’ approximant functions C,,,(t) for m =0,  1. 

For the constant term there is as yet no theory; the first three approximants (table 
1 and figure 14) suggest C = -0.09. 

4. Discussion 

This paper has been based on the simple trick, explained in § 2, of differentiating the 
partition function @( t )  so as to knock out successive correction terms when approximat- 
ing the coefficients Kk, thereby accelerating the approach to the limit as t +O. The 
same idea must surely have been employed by many people in many contexts, but I 
have been unable to find a reference in the literature. 1t.certainly is effective: the 
billiard area can be approximated to one part in lo4 from only 125 levels in a typical 
case (the Africa membrane). Such accuracy could not be obtained directly from the 
staircase N(E)-any attempt to employ for large E the same technique as was used 
here on @( t )  for small t would founder because the steps would generate delta functions 
when differentiated. Of course this simply reflects the fact that in N ( E )  the asymptotic 
fluctuations are large and oscillatory, whereas in @( t )  they are exponentially small. 
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Classically integrable systems have larger spectral fluctuations than classically 
chaotic ones. This led Balazs and Voros (1987) to conjecture that reconstructions of 
the asymptotic coefficients in (2) or (8) (and more generally the spectral zeta functions 
2:=, E;' continued to negative s)  from a finite number of eigenvalues will be easier 
in the chaotic case. This is certainly true for reconstructions based on N ( E )  but not 
for our much more accurate procedure based on O(t ) .  Indeed in the particular 
integrable system studied here (rectangular membrane) the vanishing of all K k z 3  
enabled A to be reconstructed to one part in 10" in spite of the large spectral 
fluctuations! In fact, what determined the accuracy of our reconstructions of a given 
coefficient Kk was not the classical chaology but the values of the next few coefficients. 
I do not know whether this remains true as the number of included eigenvalues and 
the order m of reconstruction both increase indefinitely. 
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